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Tensor Nuclear Norm-Based Low-Rank
Approximation With Total Variation Regularization

Yongyong Chen, Shuqin Wang , and Yicong Zhou , Senior Member, IEEE

Abstract—Some existing low-rank approximation approaches
either need to predefine the rank values (such as the matrix/tensor
factorization-based methods) or fail to consider local information
of data (e.g., spatial or spectral smooth structure). To overcome
these drawbacks, this paper proposes a new model called the ten-
sor nuclear norm-based low-rank approximation with total vari-
ation regularization (TLR-TV) for color and multispectral image
denoising. TLR-TV uses the tensor nuclear norm to encode the
global low-rank prior of tensor data and the total variation reg-
ularization to preserve the spatial-spectral continuity in a unified
framework. Including the hyper total variation (HTV) and spatial-
spectral total variation (SSTV), we propose two TLR-TV-based
algorithms, namely TLR-HTV and TLR-SSTV. Using the alternat-
ing direction method of multiplier, we further propose two simple
algorithms to solve TLR-HTV and TLR-SSTV. Extensive experi-
ments on simulated and real-world noisy images demonstrate that
the proposed TLR-HTV and TLR-SSTV outperform the state-
of-the-art methods in color and multispectral image denoising in
terms of quantitative and qualitative evaluations.

Index Terms—Low-rank tensor approximation, tensor nuclear
norm, hyper total variation, spatial-spectral total variation, image
denoising.

I. INTRODUCTION

EXPLOITING low-dimensional structure from high-
dimensional data, low-rank matrix approximation

(LRMA) and low-rank tensor approximation (LRTA) [1]–[3]
have received increasing attention in the fields of computer vi-
sion and pattern recognition. Because images are inevitably
corrupted by noise during the image acquisition and transmis-
sion procedures, this poses great challenges to further image
processing, such as image inpainting [4], image classification
[5], and object detection [6]. Therefore, image denoising is an

Manuscript received April 14, 2018; revised August 12, 2018; accepted
September 7, 2018. Date of publication October 1, 2018; date of current version
December 17, 2018. This work was supported in part by the Macau Science and
Technology Development Fund under Grant FDCT/189/2017/A3 and in part by
the Research Committee at University of Macau under Grants MYRG2016-
00123-FST and MYRG2018-00136-FST. The guest editor coordinating the
review of this manuscript and approving it for publication was Prof. Thierry
Bouwmans. (Corresponding author: Yicong Zhou.)

Y. Chen and Y. Zhou are with the Department of Computer and Information
Science, University of Macau, Macau 999078, China (e-mail:, yongyongchen.
cn@hotmail.com; yicongzhou@umac.mo).

S. Wang is with the College of Mathematics and Systems Science,
Shandong University of Science and Technology, Qingdao 266590, China
(e-mail:,ShuqinWang.cn@hotmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTSP.2018.2873148

important and necessary step to recover a clean image data from
contaminated observations.

The core of image denoising based on LRMA and LRTA [1],
[3], [7]–[11] is how to exactly build a proper low-rank regu-
larizer to measure the global structure of the underlying image
data due to the fact that the high-dimensional data inherently
possess a low-rank structure [1]–[3]. As a traditional method,
principal component analysis (PCA) uses the l2-norm fidelity to
measure the error. However, because l2-norm is optimal to sup-
press additive Gaussian noise, PCA fails to measure outliers.
To address this issue, Candès et al. [7] and Wright et al. [1]
proposed a robust PCA (RPCA) model in which the error (in-
cluding outliers, gross corruptions) is measured by l1-norm and
the low-rank property is explored by the nuclear norm. Then, the
noisy observation matrix Y is decomposed into a low-rank term
L and a sparse component S. Many variants of LRMA [9]–[14]
have been developed. For more details about LRMA, one refers
to [15], [16]. Most of the recent approaches for LRMA can
be roughly classified into two categories: 1) matrix rank min-
imization, which is often achieved by minimizing its convex
relaxation; and 2) matrix factorization, where the factor matri-
ces naturally upper-bound the rank of the approximation. For
example, shang et al. [17] proposed a scalable robust bilinear
factorization method to recover low-rank and sparse matrices.
The low-rank matrix L ∈ Rn1 ×n2 is factorized as the product
of two small factor matrices U ∈ Rn1 ×r and V ∈ Rr×n2 , i.e.,
L = UV . Thus, the low-rank property can be guaranteed by
rank(L) = rank(UV ) ≤ min{rank(U), rank(V )} and r �
min{n1 , n2}. The basic assumption of matrix-factorization-
based methods [17]–[19] is that the low-rank prior r is known.
However, this assumption is impractical since the true rank value
of matrix data is unknown in real applications. On the other hand,
to handle the tensor data, the above methods should unfold the
tensor data to produce matrix Y among the spectral mode, in-
dicating that LRMA-based denoising approaches are exploited
only the spectral correlation of tensor data. This is insufficient
and may cause the loss of useful information along other two
dimensions [3]. The last limitation of LRMA-based approaches
is that they can handle only the matrix data [2], [3].

Recent advances [2], [3], [20], [21] have investigated that
tensor-based methods have great potential in image processing.
Unfortunately, the tensor rank is difficult to define and imple-
ment in real applications. In the literature, two common tensor
decomposition forms are CANDECOMP/PARAFAC (CP) [22]
and Tucker decomposition [23]. These result in different defini-
tions of tensor rank. For example, the CP rank is defined as the
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Fig. 1. Comparison of color image denoising. (a) Original image, (b) noisy
image corrupted by salt&pepper noise, (c)–(f) reconstructed by IALM [29],
WSNN [21], TRPCA [3], and our TLR-HTV, respectively. We can see that the
images reconstructed by low-rank matrix and tensor-based methods lose some
spatial structure of the color image, and our proposed TLR-HTV can recover
the fine structure of the color image.

smallest number of rank-1 factors since it decomposes a tensor
as a number of rank-1 factors. As a result, it may suffer from high
computation cost [24]. The best low-rank approximation is un-
known because it is difficult to compute the CP rank [3]. Tucker
decomposition [23] decomposes a tensor data into one small
core tensor and a set of matrices [3], [25]. However, the ranks
along all modes must be manually predefined before running
the algorithm [26]. This may be intractable in practice. Follow-
ing the similar idea of matrix factorization, tensor factorization
[27], [28] is also adopted to encode the low-rank property. Apart
from the challenging issue of the unknown rank value, the lo-
cal minima of matrix factorization and tensor factorization may
lead to performance degradation.

These LRMA-and LRTA-based approaches still face two
main challenges: 1) some existing low-rank approximation ap-
proaches may need to manually pre-define the rank values (espe-
cially matrix factorization and tensor factorization-based meth-
ods [17]–[19], [27]). 2) LRMA-and LRTA-based approaches
explore only the high correlation along the spectral dimension,
without consideration of the spatial piecewise smooth structure
of image data. Their performances are not satisfactory for many
real applications. As shown in Fig. 1, the images reconstructed
by LRMA-and LRTA-based methods still remain noise and suf-
fer from the loss of local details (see the zoomed window).
Therefore, ignoring local structure of image data leads to the
fact that current LRMA-and LRTA-based approaches are still
lack of robustness to recover details of images. Many efforts us-
ing total variation (TV) regularization [26], [30]–[32] have been
developed to capture the local characteristics in color and mul-
tispectral images which are of crucial importance in magnetic
resonance image super-resolution [33], hyperspectral image de-
noising [26], [31]. These phenomena motivate us to combine
the global property (low-rank prior) with the local structure
information of the image data in the tensor level.

To address these issues, we propose a new model called tensor
nuclear norm-based low-rank approximation with total variation
regularization (TLR-TV) in a tensor framework. It treats the
noisy color and multispectral images as the third-order tensor
data, taking advantage of the inherently spatial-spectral relation.

TLR-TV can simultaneously explore the high correlation of im-
age data and the spatial-spectral local consistency for effective
image recovery. Instead of using the traditional nuclear norm
[1], [29], matrix factorization or tensor factorization regulariz-
ers [17], [19], [27], [28], the proposed method regularizes the
inherently low-rank property by the tensor nuclear norm be-
cause it has superior power of capturing the “spatial-shifting”
correlation [8] and avoids pre-estimating the rank prior. The
tensor nuclear norm of the tensor data X is defined as the sum
of singular values of all frontal slices of X̂, where X̂ is the ten-
sor obtained by the fast Fourier transformation along the tube
fibers of X. And the tensor nuclear norm has been proved to be
the tightest convex envelope of the tensor multi-rank [25]. The
tensor nuclear norm is based on a novel tensor decomposition
framework [8], named tensor-SVD. It has a similar structure of
the matrix singular value decomposition. The resulting algebraic
operation is close to that of matrix algebraic operation (please
see Definition 3.2 in Section III). Our main contributions are as
follows.

� We propose a new TLR-TV model as a unified framework.
TLR-TV integrates the global low-rank property and lo-
cal piecewise smooth characteristic for image denoising.
The proposed TLR-TV uses the tensor nuclear norm to
model the low-rank prior and the total varaition regulariza-
tion to preserve the spatial consistency for effective image
recovery.

� Integrating the hyper total variation (HTV) and spatial-
spectral total variation (SSTV) to our TLR-TV model, we
further propose two algorithms for color and multispectral
image denoising, namely TLR-HTV and TLR-SSTV. To
solve the optimization problems of TLR-HTV and TLR-
SSTV, we propose two easy-to-implement algorithms via
the alternating direction method of multipliers (ADMM).

� Extensive experiments on simulated and real noisy images
validate the effectiveness of our proposed methods qualita-
tively and quantitatively. The results demonstrate that the
proposed TLR-HTV is better to exploit the local smooth
structure for color image and TLR-SSTV is the better one
for multispectral image.

The outline of this paper is structured as follows. Section II
reviews the related works. Section III presents several notations
and definitions. Section IV introduces our method for image de-
noising, and designs two efficient algorithms based on ADMM.
Section V evaluates the performance of our proposed methods
and Section VI concludes this paper.

II. RELATED WORK

In this section, we roughly divide the related works of image
denoising into three categories: low-rank matrix approximation
(LRMA), low-rank tensor approximation (LRTA), and low-rank
plus total variation-based methods.

A. LRMA-Based Methods

LRMA aims to decompose the unfolding matrix data into a
superposition of a low-rank component representing the clean
image and a sparse term denoting the sparse noise, such as
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impulse noise, stripes, dead lines [9], [11]. Lin et al. [29] pro-
posed a fast and efficient solver for robust principal component
analysis. Based on this framework, Zhang et al. [9] proposed
an image restoration model named low-rank matrix recovery
(LRMR) by the bilateral random projection-based GoDec [34].
However, LRMR needs to estimate the matrix rank value, which
is hard to determine. Thus the result of LRMR may be subopti-
mal. Essentially, LRMA-based methods [9]–[11], [35] consider
the low-rank structure in only the mode-3 unfolding matrix of
a given tensor data. In other words, they effectively exploit
only the spectral redundancy among mode-3. Thus, these afore-
mentioned approaches may face several deficiencies. Firstly,
these approaches are able to handle only the matrix data, which
severely limits their scalability. Secondly, the process of trans-
forming the multi-dimensional data into a matrix data unavoid-
ably causes the structure information loss without taking the
spatial correlation within a channel (of color image) or band (of
multispectral image) into account.

B. LRTA-Based Methods

To overcome the first shortcoming of LRMA-based methods,
many works [2], [3], [21], [25], [30] extend the low-rank prop-
erty into the tensor level and possess the strong performance
guarantee over the matrix methods. For example, considering
both the spatial and spectral information, Xie et al. [36] pro-
posed to denoise multispectral images based on Tucker and CP
low-rank decomposition for a general tensor. From both theo-
retical and computational aspects, Goldfarb et al. [2] presented
a convex optimization framework HoRPCA and a nonconvex
model for LRTA. Then, the model HoRPCA was applied for
image denoising in [37]. Considering that the contributions of
different modes for the Tucker rank may be not equal, Huang
et al. [21] proposed to interpret the weighted strategy for all
unfolding matrices into the HoRPCA framework.

C. Low-Rank Plus Total Variation-Based Methods

These above-mentioned LRMA and LRTA approaches share
several limitations: they may either need to manually predefine
the rank values (especially matrix/tensor factorization-based
methods) or ignore the local structure information of the im-
age data. Several efforts [18], [27] have been made to estimate
the rank values of clean data. However, these methods may
overestimate or underestimate the rank values of the recovered
data since the true rank values of matrix and tensor data are
unknown in real scenarios. Therefore, works [26], [32], [33]
proposed to exploit the total varation for preserving edge infor-
mation and the local piecewise smoothness. In [26], He et al.
integrated the hyper total variation norm and the nuclear norm
into a rank-constrained LRMA model. Shi et al. [33] focused
on magnetic resonance image super-resolution from their low-
resolution counterparts using the LRMA and TV regularization.

III. PRELIMINARIES

In this section, we first give the definition of t-product
(Definition 3.1) which provides a matrix-like multiplication

TABLE I
EXPLANATION OF NOTATION IN THIS PAPER

of third-order tensors. The tensor-SVD (Definition 3.2) is
then efficiently computed by matrix singular value decompo-
sition in the Fourier domain. Finally, the tensor nuclear norm
(Definition 3.3) is proposed and transformed into the nuclear
norm of block-diagonal matrix in the Fourier domain (see (4)).
This results in the superior power of capturing the intrinsically
“spatial-shifting” correlation [8]. They will be used in the for-
mulation and the optimization of our proposed method. Table I
lists some notations used in this paper.

Definition 3.1: (t-product) Let X ∈ Rn1 ×n2 ×n3 and Y ∈
Rn2 ×n4 ×n3 . Then the t-product X ∗ Y is an n1 × n4 × n3
tensor,

X ∗ Y = fold(circ(X) ∗ TenMat(Y)), (1)

where circ(X) is defined as an n1n3 × n2n3 matrix

circ(X) =

⎡
⎢⎢⎢⎢⎣

X(1) X(n3 ) · · · X(2)

X(2) X(1) · · · X(3)

...
...

. . .
...

X(n3 ) X(n3 −1) · · · X(1)

⎤
⎥⎥⎥⎥⎦

; (2)

The TenMat and fold operations are defined as

TenMat(X) =

⎡
⎢⎢⎢⎢⎣

X(1)

X(2)

...

X(n3 )

⎤
⎥⎥⎥⎥⎦

, fold(TenMat(X)) = X. (3)

Based on the above t-product (Definition 3.1), the tensor-SVD
is defined as follows.

Definition 3.2: (Tensor-SVD) For X ∈ Rn1 ×n2 ×n3 , its
tensor-SVD is given by

X = U ∗ S ∗ VT ,

where U ∈ Rn1 ×n1 ×n3 and V ∈ Rn2 ×n2 ×n3 are orthogonal
tensors, S ∈ Rn1 ×n2 ×n3 is an f-diagonal tensor. Each frontal
slice of S is a diagonal matrix. ∗ is the t-product.

Definition 3.3: (Tensor nuclear norm) The tensor nuclear
norm (TNN) of a tensor X ∈ Rn1 ×n2 ×n3 , denoted as ‖X‖�, is
defined as the sum of singular values of all frontal slices of X̂

and further transformed into the nuclear norm of block-diagonal
matrix in the Fourier domain, i.e.,

‖X‖� =
1
n3

n3∑
i=1

‖X̂(i)‖∗ = ‖bdiag(X̂)‖∗, (4)
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where bdiag(X̂) ∈ Rn1 n3 ×n2 n3 is a block-diagonal matrix of
XT in the Fourier domain,

bdiag(X̂) =

⎡
⎢⎢⎢⎢⎢⎢⎣

X̂
(1)

X̂
(2)

. . .

X̂
(n3 )

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5)

IV. TENSOR NUCLEAR NORM-BASED LOW-RANK

APPROXIMATION WITH TOTAL VARIATION REGULARIZATION

In this section, we first develop a Tensor nuclear norm-
based Low Rank approximation with Total Variation regu-
larization (TLR-TV) model that integrates the tensor nuclear
norm, l1-norm, and TV regularization in a unified framework.
In TLR-TV, two extensions of the traditional TV regularization,
i.e., HTV and SSTV are introduced to handle the tensor data.
Sections IV-B and IV-C propose two algorithms by ADMM, in
which our model is split into several easier sub-problems. All
variables are updated by minimizing the objective function in a
Gaussian-Seidel manner and thus the per-iteration cost is quite
low.

A. TLR-TV

Many LRMA-and LRTA-based methods [1]–[3], [11] have
achieved promising performance on image denoising. However,
it may be insufficient that they consider only the low-rank prior
and ignore the local structure information of image data. To
overcome this issue, when recovering the tensor data L using
LRTA, we also impose the TV constraint on L to preserve the
local information. Thus, we develop a new model called the
tensor nuclear norm-based low-rank approximation with total
variation regularization, i.e.,

min
L,S,G

α‖L‖� + μ‖L‖T V + λ‖S‖1 + γ‖G‖2
F

s.t. L + S + G = Y, (6)

where α, μ, λ, γ are trade-off parameters to balance all four
terms. Y is the observed tensor data, such as the noisy color and
multispectral images. L is the low-rank tensor term, which is the
clean image data. S is the sparse error term denoting outliers and
non-Gaussian noise, such as salt&pepper noise and G represents
the Gaussian noise. ‖L‖� denotes the tensor nuclear norm in
Definition 3.3.

Compared with several state-of-the-art approaches, such as
RPCA [1], HoRPCA [2], TRPCA [3], one advantage of our
TLR-TV model is that TLR-TV not only employs the high cor-
relation among the spectral mode (the tensor nuclear norm), but
also encodes the spatial-spectral continuity (the TV norm) in
a tensor framework. Besides, several existing matrix factoriza-
tion or Tucker decomposition-based approaches [26] inevitably
require to predefine the rank values of three unfolding matri-
ces. They may overestimate or underestimate the rank of the
recovered data since the true rank values of matrix and tensor
data are unknown in real scenarios. Our TLR-TV uses the ten-
sor nuclear norm to encode the low-rank prior by automatically

determining the rank information and the superior power of
capturing the “spatial-shifting” correlation [8]. This is the main
advantage and difference of tensor nuclear norm compared to
CP-decomposition-and Tucker-decomposition-based rank. Due
to the aforementioned aspects, the proposed TLR-TV can well
reconstruct clean images from their noisy ones.

In TRL-TV, the tensor nuclear norm ‖L‖� is exploited to en-
code the global low-rank prior of tensor data. Then the remaining
issue of TRL-TV is how to select a proper TV regularization to
handle the tensor data. The TV regularization first introduced in
[38] was used to remove Gaussian noise and preserve edges of
images. This is due to the fact that TV could measure the differ-
ence between a pixel and its neighbors. There are two popular
TV norms, l1-based anisotropic TV and l2-based isotropic TV.
Here, we focus on the anisotropic TV norm for image denoising.
Anisotropic TV norm is defined as

‖L‖T V =
∑
i,j

‖DhL‖1 + ‖DvL‖1 , L ∈ Rn1 ×n2 (7)

where Dh and Dv are horizontal and vertical 2-D finite-
difference operators.

Here, we introduce two novel TV norms, namely HTV and
SSTV norms, to preserve the local piecewise continuity of tensor
data. They can be considered as extensions of the traditional
anisotropic TV norm (7). For a tensor data L ∈ Rn1 ×n2 ×n3 ,
HTV is defined as follows

LH T V =
n3∑
t=1

‖L(t)‖T V , (8)

and SSTV is calculated by

LSST V =
∑
i,j,t

‖DhL‖1 + ‖DvL‖1 + ‖DsL‖1 . (9)

where Ds is the 2-D finite-difference operator along the spectral
or channel direction.

The HTV norm is in a band-by-band way, which means that
the traditional TV norm is computed in spatial domain sepa-
rately, while the SSTV norm considers the consistency among
the both spatial and spectral dimensions.

Note that the first two terms of TLR-TV in (6), namely ‖L‖�
and ‖L‖T V , are coupled, because they share the same variable
L. An intuitive interpretation is that we impose both global
low-rankness and local piecewise priors into the tensor data to
be recovered. Then, we employ the variable splitting technique
[39] to solve the TLR-TV model (6) in the next subsection.
To distinct our methods with two different TV norms, we use
TLR-HTV and TLR-SSTV to stand for TLR-TV using HTV
and SSTV, respectively.

B. Iterative Optimization Procedure for TLR-HTV

Introducing the HTV norm and an auxiliary variable Z

to the TLR-TV model (6), our TLR-HTV model can be
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reformulated as

min
L,Z,S,G

α‖L‖� + μ‖Z‖H T V + λ‖S‖1 + γ‖G‖2
F

s.t. L + S + G = Y, L = Z. (10)

Due to the fact that the objective function of model (10) w.r.t.
the four variables L,Z,S,G is separable, we solve the model
(10) using the ADMM framework by minimizing the augmented
Lagrangian function of model (10) which is

Lρ(L,Z,S,G;W,E) = α‖L‖�

+ μ‖Z‖H T V + λ‖S‖1 + γ‖G‖2
F

+
ρ

2

(∥∥∥∥L + S + G − Y +
W

ρ

∥∥∥∥
2

F

+
∥∥∥∥L − Z +

E

ρ

∥∥∥∥
2

F

)
, (11)

where W is the Lagrange multiplier (or dual variable) associated
with constraint L + S + G = Y, and E is the Lagrange multi-
plier corresponding to constraint L = Z. ρ > 0 is a positive
penalty parameter.

Then, we try to find a saddle point of Lρ(L,S,Z,G;W,E),
which is also the solution of the original problem (6). With
simple manipulations, we have the following iterative scheme
using the general framework of ADMM:

1) Update L: Restoration: Fixing other variables except for
L in (11), we can obtain the following sub-problem:

Lk+1 = arg min
L

Lρk
(L,Zk ,Sk ,Gk ;Wk ,Ek );

= arg min
L

α

ρk
‖L‖� +

1
2
‖L − Dk‖2

F , (12)

where Dk = ρk (Y+Zk −Sk −Gk )−(Wk +Ek )
2ρk

.
Using equation (4), the above (12) can be transformed into

the Fourier domain. It is equivalent to the following formula:

L̂k+1 = arg min
L̂

α

ρk
‖bdiag(L̂)‖∗ +

1
2
‖L̂ − D̂k‖2

F ; (13)

Obviously, (13) can be separated into n3 independent minimiza-
tion problems where the t-th problem is

L̂
(t)
k+1 = arg min

L̂
( t )

α

ρk

∥∥∥L̂(t)
∥∥∥
∗
+

1
2

∥∥∥L̂(t) − D̂
(t)
k

∥∥∥
2

F

= Γα/ρk

(
D̂

(t)
k

)
(14)

where t = 1, 2, . . . , n3 , and Γρ(X) is the matrix singular
value thresholding operator [40]: Γρ(X) := Udiag(σ̄)VT ,X =
Udiag(σ)VT is the SVD of matrix X and σ̄ = max{σ − ρ, 0}.
Due to the independence of the sub-problems, it can be effi-
ciently computed in parallel.

2) Update Z: Spatial and Spectral Smoothness Preservation:
Fixing other variables except for Z in (11), we can obtain the
following sub-problem:

Zk+1 = arg min
Z

Lρk
(Lk+1 ,Z,Sk ,Gk ;Wk ,Ek );

= arg min
Z

μ

ρk
‖Z‖H T V +

1
2
‖Z − Tk‖2

F , (15)

where Tk = Lk+1 + Ek/ρk .
To solve (15), we can solve each frontal slice Z

(t)
k+1 of Zk+1 ,

1 ≤ t ≤ n3 separately,

Z
(t)
k+1 = arg min

Z( t )

μ

ρk
‖Z(t)‖T V +

1
2
‖Z(t) − T

(t)
k ‖2

F . (16)

Many efforts have been made to develop efficient and scalable
algorithms for the TV problem. Here, we adopt the fast gradient-
based algorithm [41] to solve the sub-problem (16).

3) Update S: Impulse Noise Removal: Fixing other variables
except for S in (11), we can obtain the following sub-problem:

Sk+1 = arg min
S

Lρk
(Lk+1 ,Zk+1 ,S,Gk ;Wk ,Ek );

= arg min
S

λ

ρk
‖S‖1 +

1
2
‖S − Mk‖2

F , (17)

where Mk = Y − Lk+1 − Gk − Wk/ρk . Then the closed-
form solution of (17) can be obtained by resorting to the element-
wise shrinkage operator [42], that is,

Sk+1 = Sλ/ρk
(Mk ). (18)

And Sρ(x) := sign (x) ∗ max{|x| − ρ, 0}.
4) Update G: Gaussian Noise Removal: Fixing other vari-

ables except for G in (11), we can obtain the following sub-
problem:

Gk+1 = arg min
G

Lρk
(Lk+1 ,Zk+1 ,Sk+1 ,G;Wk ,Ek );

= arg min
G

γ‖G‖2
F +

ρk

2
‖G − Nk‖2

F , (19)

where Nk = Y − Lk+1 − Sk+1 − Wk/ρk . This is a standard
least squares regression problem with closed-form solution:

Gk+1 = (2γ + ρk )−1(ρkNk ). (20)

5) Update W,E, ρ: Lagrangian Multipliers and Penalty Pa-
rameter: These variables are updated by the following equa-
tions:

Wk+1 = Wk + ρk (Lk+1 + Sk+1 + Gk+1 − Y); (21)

Ek+1 = Ek + ρk (Lk+1 − Zk+1); (22)

ρk+1 = min{βρk , ρmax}. (23)

It is worth noting that we select β > 1 to further facilitate the
convergence speed [43].

For the stopping criterion, we select the following formulas:

chgY = ‖Lk+1 + Sk+1 + Gk+1 − Y‖∞; (24)

chgM = ‖Lk+1 − Zk+1‖∞; (25)

chgL = ‖Lk+1 − Lk‖∞; (26)

chgZ = ‖Zk+1 − Zk‖∞; (27)

chgS = ‖Sk+1 − Sk‖∞; (28)

chgG = ‖Gk+1 − Gk‖∞. (29)

where ‖L‖∞ = maxi,j,t Li,j,t . At the k-th iteration, we will
terminate our TLR-HTV algorithm by the following final
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criterion:

Chg = max{chgY, chgM, chgL, chgZ, chgS, chgG} ≤ ε,
(30)

where ε > 0 is a given tolerance. In our experiments, we set
ε = 10−5 .

C. Iterative Optimization Procedure for TLR-SSTV

Introducing the SSTV norm and two auxiliary variables
Z,X to the TLR-TV model (6), our TLR-SSTV model can be
written as

min
L,Z,S,X,G

α‖L‖� + μ‖X‖1 + λ‖S‖1 + γ‖G‖2
F

s.t. L + S + G = Y, L = Z, D(Z) = X, (31)

where D = [Dh ;Dv ;Ds ] is the concatenated difference oper-
ation. Then, the augmented Lagrangian function of problem
(31) is

Lρ(L,Z,S,X,G;W,E,Π) = α‖L‖� + μ‖X‖1

+ λ‖S‖1 + γ‖G‖2
F +

ρ

2

(∥∥∥∥L + S + G − Y +
W

ρ

∥∥∥∥
2

F

+
∥∥∥∥L − Z +

E

ρ

∥∥∥∥
2

F

+
∥∥∥∥D(Z) − X +

Π
ρ

∥∥∥∥
2

F

)
, (32)

where Π is the Lagrange multiplier associated with constraint
D(Z) = X. Then, the iterative procedures for TLR-SSTV are
summarized as follows. Due to the page limitation, we give
only the sub-problems of TLR-SSTV different from these of
TLR-HTV.

1) Update Z: Fixing other variables except for Z in (32),
we can obtain the following sub-problem:

Zk+1 = arg min
Z

ρk

2

×
(∥∥∥∥Lk+1 − Z +

Ek

ρk

∥∥∥∥
2

F

+
∥∥∥∥D(Z) − Xk +

Πk

ρk

∥∥∥∥
2

F

)
. (33)

It can be solved by the following linear system:

ρk (I + D∗D)Z = ρk (Lk+1 + D∗(Xk )) + Ek −D∗(Πk ),
(34)

where D∗ denotes the adjoint operator of D. Finally, by the 3D
Fourier transform (fftn) and its inverse transform (ifftn), we can
obtain the closed-form solution

Zk+1 = ifftn

×
(

fftn(ρk (Lk+1 + D∗(Xk )) + Ek −D∗(Πk ))
ρk (1 + |fftn(Dh)|2 + |fftn(Dv )|2 + |fftn(Ds)|2)

)
.

(35)

2) Update X: Fixing other variables except X in (32), we
can obtain the following sub-problem:

Xk+1 = arg min
X

μ

ρk
‖X‖1 +

1
2

∥∥∥∥X −
(
D(Zk+1) +

Πk

ρk

)∥∥∥∥
2

F

,

(36)

Algorithm 1: TLR-HTV.

Input: Y, ε, α, λ = 1/
√

max(n1 , n2)n3 , μ, γ, β = 1.1.
Initialize: L0 , Z0 , S0 , G0 , W0 , E0 initialized to 0,

ρ0 = 10−4 , k = 0.
1: while not converged do
2: Compute D̂k = fft(Dk , [], 3);
3: Update L̂k+1 by
4: for i = 1, 2, . . . , n3 do

5: Compute L̂
(i)
k+1 using (14);

6: end for
7: Compute Lk+1 = ifft(L̂k+1 , [], 3);
8: Update Zk+1 , Sk+1 , Gk+1 , Wk+1 , Ek+1 , and ρk+1

by (15), (18), (20), (21), (22), (23), respectively;
9: Check the convergence conditions

10: Chg ≤ ε.
11: end while
Output: Lk .

Algorithm 2: TLR-SSTV.
Input: Y, ε, α, λ, μ, γ, β = 1.1.
Initialize: L0 , Z0 , S0 , X0 , G0 , W0 , E, Π0 initialized to 0,

ρ0 = 10−4 , k = 0.
1: while not converged do
2: Compute D̂k = fft(Dk , [], 3);
3: Update L̂k+1 by
4: for i = 1, 2, . . . , n3 do

5: Compute L̂
(i)
k+1 using (14);

6: end for
7: Compute Lk+1 = ifft(L̂k+1 , [], 3);
8: Update Zk+1 , Sk+1 , Xk+1 , Gk+1 , Wk+1 , Ek+1 ,

Πk+1 , and ρk+1 by (35), (18), (37), (20), (21), (22),
(38), (23), respectively;

9: Check the convergence conditions
10: end while
Output: Lk .

and its close-form solution is

Xk+1 = Sμ/ρk
(D(Zk+1) + Πk/ρk ). (37)

3) Update Π: Πk+1 is updated by

Πk+1 = Πk + ρk (D(Zk+1) − Xk+1). (38)

Note that the updating rules of variables Sk+1 , Gk+1 , Wk+1 ,
Ek+1 , and ρk+1 are the same with those of TLR-HTV.

Algorithms 1 and 2 show the pseudo codes of our specifically
designed algorithms: TLR-HTV and TLR-SSTV, respectively.

D. Connection With Several Existing Works

In this section, we emphasize the connection and difference
between our TLR-TV and several existing works [2]–[4], [21],
[30], [32], [44] in the literature. The works in [2], [21] and
[3] model the globally high correlation among different chan-
nels/bands using the tensor unfolding and the tensor nuclear



1370 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 6, DECEMBER 2018

norm, respectively. However, their common shortcoming is the
lack of preserving local information. Our methods incorporate
the hyper total variation (HTV) and spatial-spectral total varia-
tion (SSTV) regularizations to characterize the local piecewise
smoothness; The method in [32] has to manually predefine the
rank values along three modes before running the algorithm.
There are no off-the-shelf methods to set the rank values in a
unified way. Our proposed methods can automatically determine
the rank values. Besides, the corresponding sub-problem with
respect to the low-rank term of LRMA and LRTA focus only on
the real space while our sub-problem is in the real and Fourier
spaces (see the sub-problem (13)). [30] proposed a novel tensor
completion model using the weighted sum of the nuclear norm
(SNN) [21] and total variation simultaneously. The weighted
SNN (WSNN) is defined as the weighted sum of nuclear norm
of all unfolding matrices. It solves the corresponding problem
by the primal-dual splitting technique. Similarly, [44] uses the
tensor unfolding among all modes and Tucker decomposition to
enable the low-rank prior. However, our methods use the tensor
nuclear norm which is different from Tucker decomposition [44]
and (weighted) SNN [4], [21], [30]. The comparison between
the tensor nuclear norm and the CP-and Tucker-decomposition-
based rank is listed as follows:

� The CP rank is defined as the smallest number of rank-1
factors. However, CP decomposition faces several chal-
lenges: (1) the local minima and high computation burden
due to the nonconvex optimization process; (2) heavy ill-
posedness because the best rank prior is generally unknown
in practice;

� The Tucker rank (or multi-rank) is a vector of ranks of
all unfolding matrices. As a convex surrogate of Tucker
rank, the sum of nuclear norm is defined as the sum of
the nuclear norms of all unfolding matrices. However, the
unfolding process, transforming the tensor data into ma-
trices, may lose the inherent spatial-spectral correlation.
Because different modes of tensor data may have various
contributions to Tucker rank, the weighted SNN [21] was
proposed. One challenging issue is how to choose a proper
weight for each mode.

� The tensor nuclear norm of the tensor data X is defined as
the sum of the singular values of all frontal slices of X̂,
obtained by the fast Fourier transformation along the tube
fibers of X. Then, the tensor nuclear norm can be trans-
formed into the nuclear norm of block-diagonal matrix in
the Fourier domain. This results in the superior power of
capturing the “spatial-shifting” correlation.

These differences motivated us to use the tensor nuclear norm
to encode the low-rank prior.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments on several challeng-
ing datasets to evaluate the performance of our algorithms. All
experiments are run in MATLAB R2016a on a 64-bit personal
computer with a E5-2609 1.90 GHz CPU and 16 GB memory.
We apply our TLR-HTV and TLR-SSTV for removing noise
from color and multispectral images, and analyze our models
with respect to several important parameters.

TABLE II
COMPARISON OF STATE-OF-THE-ART METHODS AND THEIR PROPERTIES

A. Experimental Setting

Baseline approaches: Our TLR-HTV and TLR-SSTV are
compared with several state-of-the-art approaches including:
low-rank matrix approximation method: IALM [29]; low-rank
tensor approximation methods: tensor robust principal com-
ponent analysis (TRPCA) [3], weighted sum of nuclear norm
(WSNN) [21]; TV-based methods: spatial-spectral total varia-
tion (SSTV) [31]. low-rank matrix approximation and TV-based
method: LRTV [26]. We briefly describe these competing meth-
ods in Table II.

Datasets
We use four datasets, including two color image datasets:

Berkeley segmentation dataset, Kodak PhotoCD dataset, a mul-
tispectral image dataset: Columbia Multispectral dataset, and
one real noisy color image dataset. The statistics of these datasets
are briefly summarized below:

– Berkeley Segmentation Dataset (BSD):1 There are 300
clean color images of size 481 × 321 × 3 in the whole
dataset. In our experiments, we randomly select 60 images
for the impulse noise removal task.

– Kodak PhotoCD Dataset (Kodak):2 The whole dataset con-
sists of 24 clean color images of size 512 × 768 × 3. We
select all images in our experiment.

– Columbia Multispectral Database (CAVE):3 The CAVE
dataset contains 32 clean multispectral images. Each of
them has 31 bands of size 512 × 512. In our second experi-
ment, we select two multispectral images: Toy and Flowers
for the multispectral image denoising task.

– Real noisy color image:4 There are 60 real noisy color
images of different sizes in this dataset. Here, we choose
two images: Dog and Frog of sizes 400 × 400 and 375 ×
500 with red, blue, and green channels, respectively.

Quantitative assessment:
Except visual quality, we employ four quantitative quality

indexes, including the peak signal-to-noise ratio (PSNR), struc-
ture similarity (SSIM), feature similarity (FSIM), erreur relative
globale adimensionnelle de synthese (ERGAS) [45] to measure
the reconstruction accuracies. In general, an image with higher
PSNR, SSIM, and FSIM values, or lower ERGAS value is closer
to the ground truth. For a given image I of size m × n, PSNR

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
2http://r0k.us/graphics/kodak/
3http://www1.cs.columbia.edu/CAVE/databases/multispectral/
4http://demo.ipol.im/demo/125/

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://r0k.us/graphics/kodak/
http://www1.cs.columbia.edu/CAVE/databases/multispectral/
http://demo.ipol.im/demo/125/
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TABLE III
QUANTITATIVE EVALUATION OF DIFFERENT DENOISING ALGORITHMS ON 4 BSD AND 4 KODAK COLOR IMAGES WITH 10%/20% IMPULSE NOISE

is defined as

PSNR = 20 log
( Speak√

MSE

)
,

where Speak is the peak pixel value of image I . Î denotes the
restored image of I . The mean square error (MSE) between
I and Î is equal to

∑m
x=1

∑n
y=1[Îi(x, y) − Ii(x, y)]2/(mn).

SSIM is defied as

SSIM =
(2μI μÎ + C1)(2σI ,Î + C2)

(μ2
I + μ2

Î
+ C1)(σ2

I + σ2
Î

+ C2)
,

where μI and μÎ denote the average values of image I and
Î , respectively. Their corresponding variances are denoted as
σI and σÎ . σI ,Î represents the covariance of I and Î . C1 =
(0.01 ∗ L)2 and C2 = (0.03 ∗ L)2 . L is the dynamic range of
the pixel values. FSIM is defined as

FSIM =
∑

z∈Ω SL (z) ∗ PCm (z)∑
z∈Ω PCm (z)

,

where Ω demotes the whole image spatial domain. The phase
congruency for position z of image I is denoted as PCx(I),
then PCm (z) = max{PCI (z), PCÎ (z)}. SL (z) is the gradient
magnitude for position z. ERGAS is defined as

ERGAS = 100α

√√√√ 1
P

P∑
i=1

(MSE2
i

μÎ
2
i

)
,

where α is the zoom factor. P is the number of spectral bands.
For example, if I is a color image, P = 3.

B. Color Image Denoising

In this subsection, we aim to evaluate the performance of our
methods for the impulse noise removal and investigate which
of HTV and SSTV is more suitable for color image denois-
ing. We use a third-order tensor Y ∈ Rn1 ×n2 ×3 to represent a
color image of spatial size n1 × n2 with red, blue and green
channels. Many efforts [1], [10]–[12] have demonstrated that
transforming each band of a multispectral image or each frame
of a surveillance video into a vector and stacking each vec-
torized image as a column of matrix, the generated matrix is
low-rank. However, this scheme is unsuitable for color image
denoising. Therefore, we apply the IALM method to recon-
struct each channel of a color image independently due to the
fact that their top singular values dominate the main informa-
tion [2], [3]. The regularization parameters λ of IALM and
TRPCA are set to 1/

√
n(1) and 1/

√
n(1)n3, respectively, where

n(1) = max{n1, n2}. Here, we compared our methods with the
WSNN algorithm, and the weights of three unfolding matri-
ces for low-rank tensor approximation are set to [15, 15, 1.5]
as suggested in [3]. The default parameters of other competing
methods are adopted. We randomly select 60 images from BSD
dataset and all images from Kodak dataset for this experiment.
8 examples of selected images are shown in the first row of
Table III. And the noisy color images are generated by adding
with different ratios τ of the salt&pepper noise. Here, the ratios
τ are set to 0.1 and 0.2, respectively.
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Fig. 2. Denoised images on 2 BSD images and 2 Kodak images by all competing methods (ratio τ = 0.2). Columns from left to right: (a) Original image,
(b) noisy image, the denoised image reconstructed by (c) SSTV [31], (d) IALM [29], (e) WSNN [21], (f) TRPCA [3], (g) TLR-HTV, and (h) TLR-SSTV. The
figure is viewed better in zoomed PDF.

Fig. 3. Comparison of PSNR, SSIM, and FSIM results of different methods for color image denoising on 60 BSD images. (a) PSNR values, (b) SSIM values,
and (c) FSIM values. The figure is viewed better in zoomed PDF.

We compute all quantitative quality indexes on 4 BSD and 4
Kodak color images as reported in Table III and all quantitative
quality indexes on all selected color images are shown in
Figs. 3 and 4. The best results are highlighted in hold and the
second-best results of each quality index are underlined for
clear comparison. And several typical recovered results are
shown in Fig. 2.

From Table III and Figs. 2, 3, and 4, several observations can
be drawn:

� For the color image denoising task, low-rank ten-
sor approximation-based approaches perform better than
low-rank matrix approximation-based approaches. For
example, all quality indexes of WSNN and TRPCA

are better than those of LRMA. The main reason
is that more channel information of a color im-
age is exploited in low-rank tensor approximation-
based approaches. While IALM generates artifacts, be-
cause IALM treats three channels of a color image
independently.

� Compared with the second-best denoising method TR-
PCA that also exploits the tensor nuclear norm to portray
the low-rank structure of the tensor data, our proposed
TLR-HTV and TLR-SSTV achieve average 2.18/1.68 dB
and 1.24/1.55 dB improvement on all BSD/Kodak images,
respectively, further verifying their advantages and
superiority.
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Fig. 4. Comparison of PSNR, SSIM, and FSIM results of different methods
for color image denoising on 24 Kodak images. (a) PSNR values, (b) SSIM
values, and (c) FSIM values. The figure is viewed better in zoomed PDF.

TABLE IV
AVERAGE PSNR (DB) RESULTS OF ALL DENOISING METHODS ON TWO

TESTING COLOR IMAGE DATASETS

� In general, our proposed methods outperform other com-
peting methods. This is mainly due to the fact that our mod-
els exploit the global spectral high relationships between
entries, and the local spatial or/and spectral smoothness.
One can obtain that considering only the low-rank prior of
a color image may cause distortion of local details. Specif-
ically, IALM, WSNN, and TRPCA methods suffer from
the hue bias issue (see the color of woman’s Siamese skirt
in the first row of Fig. 2).

� In almost cases, TLR-HTV achieves higher PSNR, SSIM
and FSIM values than TLR-SSTV.

Table IV reports the average PSNR results of all denoising
methods on two testing color image datasets. From this table, we
can see that our TLR-HTV and TLR-SSTV achieve the highest
PSNR values in all cases. TLR-HTV and TLR-SSTV outper-
form the best competing methods at least 1.01 dB and 1.24 dB,
respectively. To further investigate the denoising performance of
our methods, we change the ratio τ from 0.1 to 0.9 and compute
the PSNR and SSIM values as shown in Fig. 5. It can be observed
that our proposed TLR-HTV achieves higher PSNR and SSIM
values in all cases over other competing methods, especially
when τ is in the interval [0.3, 0.7]. Our TLR-SSTV outperforms
other methods when τ is relatively small. Therefore, we can
conclude that TLR-HTV is more robust than TLR-SSTV to the
changes of ratios of impulse noise on color images.

Fig. 5. Left: PSNR values with different ratios of impulse noise. Right: SSIM
values with different ratios of impulse noise.

C. Multispectral Image Denoising

A multispectral image essentially can be viewed as a three-
order tensor whose first two dimensions are spatial information
and third dimension is band [2], [9]. In this subsection, two mul-
tispectral images, Boy and Flowers are selected to investigate
the performance of our proposed methods. Before the denoising
process, the gray values of each band were scaled to [0, 1]. To
validate the robustness of our proposed methods for multispec-
tral image denoising, two typical kinds of noises were added into
the original clean multispectral images as described as follows:

� Case1: Impulse noise In the first denoising case, we added
the salt&pepper noise with the ratio τ = 0.15.

� Case2: Mixed noise Except for the salt&pepper noise in
the first denoising case, the zero-mean Gaussian noise with
variance 0.075 was added into all bands of two multispec-
tral images.

Note that the IALM method is replaced by LRMR which
is specially designed multispectral image denoising approach.
And thus LRMR can be regarded as the high version of IALM
for multispectral image denoising task. Another multispectral
image mixed noise removal method: LRTV is a rank-constraint
RPCA model with HTV regularization. As suggested in [26],
we set the rank prior of mode-3 unfolding matrix r = 10 and the
regularization parameter λ = 20/

√
n(1) for LRTV. We found the

the weights [15, 15, 1.5] of three unfolding matrices for low-rank
tensor approximation are unsatisfactory for multispectral image
denoising. Thus, we omit the WSNN method in this experiment.

All quantitative quality indexes on these two multispectral
images in all cases are provided in Table V with the best re-
sults highlighted in bold and the second-best results underlined.
Note that the mean values of each quality index of all bands
are computed and denoted as MPSNR, MSSIM, MFSIM, and
MERGAS, respectively. For the mixed noise removal case, our
proposed TLR-SSTV achieves the highest MPSNR, MSSIM,
and MFSIM values over all competing methods. LRTV yields
the similar performance on both two multispectral images with
our TLR-SSTV. However, LRTV performs bad for impulse noise
removal. For impulse noise removal case, TRPCA obtains com-
parable or even slightly better results in terms of MPSNR and
MSSIM on Flowers data over TLR-SSTV, but TRPCA fails to
remove the mixed noise. In general, our proposed TLR-SSTV
shows remarkable performance over TLR-HTV. The main rea-
son is that the difference between consecutive bands of a multi-
spectral image is relative small. So minimizing the SSTV regu-
larization is more reasonable for multispectral image denoising.
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TABLE V
QUANTITATIVE EVALUATION OF THE DIFFERENT DENOISING ALGORITHMS ON Boy AND Flowers FOR ALL CASES

TABLE VI
QUANTITATIVE EVALUATION OF THE DIFFERENT DENOISING ALGORITHMS ON FOUR MULTISPECTRAL IMAGE DATASETS FOR MIXED NOISE REMOVAL

Fig. 7 shows the PSNR and SSIM values of all bands of
Flowers with mixed noise. It is easy to see that our proposed
TLR-SSTV achieves higher PSNR and SSIM values in most
bands of Flowers, meaning that TLR-SSTV outperforms other
methods for mixed noise removal. We also conducted experi-
ments for mixed noise removal on four additional multispec-
tral image datasets, including CD ms, fake and beers (Fake1),
fake and food (Fake2), fake and lemon (Fake3) as reported in
Table VI. Our TLR-SSTV shows consistently superior perfor-
mance over other competing methods with respect to MPSNR
and MFSIM. Similar observations can be drawn from Fig. 6
which shows the visual comparison of all methods.

D. Real Noisy Color Image Denoising

In this subsection, we aim to test the Gaussian noise removal
on two real noisy color images: Dog and Frog. These two real
noisy images are mainly contaminated by Gaussian noise. Since
there is no ground truth of the real noisy images, we can not
compute the four above quantitative indexes and give only the
visual quality comparison of different denoised real color im-
ages. Our TLR-HTV method is compared with a basic method:
BM3D [46], one blind image denoising method: NC [47], and
SSTV [31]. Note that the denoised results of NC are downloaded
from the NC’s webpage. Other methods are not compared here
since they aim at removing the impulse noise. Figs. 8 and 9
show the denoised results on these two real color images by

all competing approaches. One can observe that TLR-HTV can
reconstruct more details while other methods either partially re-
move noise or oversmooth the results. This further demonstrates
the superiority of the proposed TLR-HTV method.

E. Model Analysis

In this subsection, we aim to investigate how to tune param-
eters in our TLR-HTV. The parameter analysis of TLR-SSTV
can be carried out in the similar way. Note that the experiments
used for parameter setting are for the color image denoising. We
select the Kodak color image: Cap as the test data as shown in
the first row of Table III. There are four important parameters
including α, μ, λ, and γ, in TLR-HTV (10). For simility, we
set α + μ + λ + γ = 1 and λ = 1/

√
n(1)n3, following TRPCA

[3]. If α, μ, λ are fixed, γ is equal to 1 − α − μ − λ. Thus, we
need to tune only parameters α and μ.

1) Sensitivity Analysis of Parameters α and μ: In our
model (10), α and μ are the parameters to balance the con-
tributions of the low-rank term and TV regularization. These
two terms dominate the performance of TLR-HTV. There-
fore, there is a need to investigate how TLR-HTV is sen-
sitive to α and μ. α and μ are selected from the set of
[0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] and [0.001,
0.005, 0.01, 0.03, 0.05, 0.07, 0.1, 0.2, 0.3, 0.4], respectively. In
Fig. 10, we show the PSNR and SSIM values of TRL-HTV
with different combinations of α and μ. From Fig. 10, we
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Fig. 6. Denoising results of images Boy (the first two rows) and Flowers (the last two rows) on CAVE dataset. The first and third rows are for Case 1 impulse
noise removal while the second and last rows are for Case 2 mixed noise removal. (a) Original false-color image (R:25, G:20, B:16). (b) Noisy image. The denoised
image reconstructed by (c) SSTV [31], (d) LRMR [9], (e) LRTV [26], (f) TRPCA [3], (g) TLR-HTV, and (h) TLR-SSTV. The figure is viewed better in zoomed
PDF.

Fig. 7. Left: PSNR values of all bands of Flowers corrupted by mixed noise;
Right: SSIM values of all bands of Flowers corrupted by mixed noise.

Fig. 8. Denoised images of the real noisy image “Dog.” (a) Real noisy image:
“Dog.” The denoised image reconstructed by (b) BM3D [46], (c) SSTV [31],
(d) NC [47], and (e) TLR-HTV. The figure is viewed better in zoomed PDF.

can see that with larger α and μ, TLR-HTV may cause the
performance degradation. When α = 0.05, 0.1 and μ = 0.005,
TLR-HTV achieves the highest PSNR and SSIM values. In
our all experiments, α, μ, and λ of TLR-HTV are set to
0.1, 0.005, 1/

√
n(1)n3, and then γ is equal to 1 − α − μ − λ.

2) Empirical Convergence of TLR-HTV: Fig. 11 shows the
empirical analysis for the convergence of TLR-HTV. The first
three subgraphs of Fig. 11 plot the PSNR, SSIM, and FSIM
values versus the iteration number of the TLR-HTV. We can

Fig. 9. Denoised images of the real noisy image “Frog.” (a) Real noisy image:
“Frog.” The denoised image reconstructed by (b) BM3D [46], (c) SSTV [31],
(d) NC [47], and (e) TLR-HTV. The figure is viewed better in zoomed PDF.

Fig. 10. PSNR and SSIM values of the TLR-HTV with different combinations
of α and μ. Left: PSNR versus (α and μ); Right: SSIM versus (α and μ).

observe that after 60 iterations, these three values become al-
most a constant. The Change defined in (30) is exploited to
illustrate the convergence rate as reported in the last subgraph
of Fig. 11. After 20 iterations, the stopping criterion experiences
a monotonic and rapid decline and stays stable after the iteration
reaches 90.

3) Running Time of TLR-HTV: The detailed comparison of
average running time of all denoising methods is reported in
Table VII. As stated in (14), (13) can be separated into n3
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Fig. 11. PSNR, SSIM, FSIM, and change values versus the iteration number
of the TLR-HTV. Upper Left: PSNR versus iteration. Upper right: SSIM versus
iteration. Lower left: FSIM versus iteration. Lower right: Change (stopping
criterion) versus iteration.

TABLE VII
COMPARISON OF AVERAGE RUNNING TIME (IN SECONDS) FOR THE COLOR

IMAGE DENOISING ON ALL KODAK IMAGES

independent minimization problems, which means that (13) can
be efficiently computed in parallel due to the independence of
all sub-problems. However, we still update the n3 independent
minimization problems in a serial manner for fair comparison.
From Table VII, one can see that SSTV is the fastest denois-
ing method among all competing methods and IALM is the
second-fastest method. WSNN and TRPCA have almost the
same computation costs. Compared with IALM, WSNN con-
sumes more time because WSNN has to compute the nuclear
norms of two additional unfolding matrices. Unfortunately, our
proposed TLR-HTV has more running time than all compet-
ing methods. The main computation burden of TLR-HTV is
performing the tensor-SVD and the total variation constraint.
It is natural because we impose the global low-rank prior and
local piecewise continuity into the tensor data to be recovered.
However, our TLR-HTV has achieved significant improvement.
Therefore, it is worthy to achieve significantly better denoising
performance by sacrificing computation efficiency.

VI. CONCLUSION

In this paper we proposed a new method for color and multi-
spectral image denoising using the globally and locally intrinsic
characteristics of the underlying clean image. More specifically,
the low-rank structure of underlying data is depicted by the ten-
sor nuclear norm under the tensor-SVD framework. To further
improve the denoising performance, two TV regularizations for
tensor data were exploited to preserve the local details of images.
Extensive experiments on both simulated and real color im-
ages as well as multispectral images have demonstrated superior

performance of the proposed methods over several state-of-the-
art LRMA and LRTA-based denoising methods.

Several directions may be considered in our future work.
Firstly, we consider to develop fast and scalable algorithms for
our proposed model. One potential scheme is to utilize the tensor
factorization technique [27] instead of tensor-SVD to capture
the low-rank property. Secondly, our proposed method can be
extended to tensor completion with applications to color image
inpainting and video recovery.
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